2 Sep 2017

windows平台搭建python机器学习环境

1. 安装python 2.7

  1. 在上面路径下在download 标签下载windows版本
  2. 安装,一路next(注意安装路径)
  3. cmd命令行:python (python不是内部或外部命令:Path环境变量添加python的安装路径)
  4. 退出: exit() 或 ctrl+z

2. 安装 Easy Install

  1. 下载ez_setup.py
  2. python ez_setup.py
  3. (查看 Python 路径import sys print sys.path )添加 ‘Python Scripts’ 路径至 PATH
  4. easy_install –version
  5. 国内镜像
    豆瓣PyPi镜像:http://pypi.douban.com/simple/
    阿里云PyPi源:http://mirrors.aliyun.com/pypi/simple/
    中科大PyPi源:http://pypi.mirrors.ustc.edu.cn/
    1. 手动
    pip install web.py -i http://mirrors.aliyun.com/pypi/simple
    easy_install -i http://pypi.douban.com/simple
    1. 创建或修改配置文件(linux的文件在~/.pip/pip.conf,windows在C:\Users\Administrator\pip\pip.ini)
       [global]  
       index-url = http://mirrors.aliyun.com/pypi/simple #镜像源  
       trusted-host = mirrors.aliyun.com            #添加镜像源为可信主机  
       disable-pip-version-check = true          #取消pip版本检查,排除每次都报最新的pip  
       timeout = 120
      

      创建或修改配置文件(linux的文件在~/.pydistutils.cfg,windows在C:\Users\Administrator\pydistutils.cfg)

       [easy_install]  
       index_url = http://mirrors.aliyun.com/pypi/simple
      
    2. 修改源文件的下载路径: pip: C:\Python27\Lib\site-packages\pip\models\index.py easy_install: C:\Python27\Lib\site-packages\setuptools\command\easy_install.py

3. 安装 Numpy(数值计算扩展:矩阵数据类型、矢量处理,以及精密的运算库)

1 安装:pip install numpy 可以下载但与scipy 不同源安装会报错,卸载 pip uninstall numpy

  1. 安装:Numpy ->pip install numpy-1.13.3+mkl-cp27-cp27m-win_amd64.whl
  2. 测试:python->import numpy as py

4. 安装 scipy(数学、科学和工程计算包)

  1. 安装:scipy ->pip install scipy-0.19.1-cp27-cp27m-win_amd64.whl
  2. 测试:python->import scipy as sy

5. 安装 MatplotLib(画图)

  1. 安装:pip install matplotlib
  2. 测试:python->import matplotlib as mb

6. 安装 scikit-learn(机器学习算法)

  1. 安装:pip install scikit-learn
  2. 测试:python->import sklearn as sl

7. 测试:

  1. 斜线坐标 test1.py
     import matplotlib
     import numpy
     import scipy
     import matplotlib.pyplot as plt
    	
     plt.plot([1,2,3])
     plt.ylabel('some numbers')
     plt.show()
    

    运行:python test1.py

  2. 矩阵数据集 test2.py
     from sklearn import datasets
     iris = datasets.load_iris()
     digits = datasets.load_digits()
     print digits.data
    

    运行:python test2.py

8. IDEA安装Python环境

  1. 安装插件:file->pluglns->python
  2. 配置SDK:File->New module>python:module SDK:python路径/python.exe

9. sublimeText3安装Python环境

Ctrl+Shift+P-> Install Package ->插件名->安装 SublimeCodeIntel,SideBarEnhancements,pylinter ,Terminal,AutoPep8,Anaconda,SublimeREPL

  1. Tools > Build System > New Build System:输入:
        "encoding": "utf-8",  
        "working_dir": "$file_path",  
        "shell_cmd": "C:\\Users\\Administrator\\AppData\\Local\\Programs\\Python\\Python35-32\\python.exe -u \"$file\"",  
        "file_regex": "^[ ]*File \"(...*?)\", line ([0-9]*)",  
        "selector": "source.python"
    
    Ctrl + S 直接保存为想要命名的编译名称(python27)
    按ctrl +b 是执行操作的命令
    
  2. 快捷键f5=>执行程序: preferences>key bindings :
      { 
      "keys":["f5"],  
      "caption": "SublimeREPL: Python - RUN current file",  
      "command": "run_existing_window_command", "args": {"id": "repl_python_run",  
      "file": "config/Python/Main.sublime-menu"} 
      }
    
  3. 快捷键:Preferences–>Browser Packages…–>进入相关的目录SublimeCodeIntel.codeintel找到config
      {  
          "Python": {    
                  "python":"C:/Python27/python.exe",    
                  "pythonExtraPaths":    
                      [    
                          "C:/Python27",  
                          "C:/Python27/DLLs",  
                          "C:/Python27/Lib",   
                          "C:/Python27/Lib/site-packages"    
                      ]    
    						
              },    
      }
    
  4. SublimeTmpl:在settings-user中设置上自己的信息
       {  
           "disable_keymap_actions": false, // "all"; "html,css"  
           "date_format" : "%Y-%m-%d %H:%M:%S",  
           "attr": {  
               "author": "mx",  
               "email": "mengxiang@xiangcloud.com.cn",  
               "link": "http://www.xiangcloud.com.cn/"  
           }  
       } 
    
  5. 修改快捷键:ctrl+alt+p创建Python模板:key bindings-user添加
       [   
           {  
               "caption": "Tmpl: Create python", "command": "sublime_tmpl",  
               "keys": ["ctrl+alt+p"], "args": {"type": "python"}  
           },  
       ] 
    

10. 数据可视化

[下载安装Graphviz](www.graphviz.org)
系统变量: path追加:`;C:\Program Files (x86)\Graphviz2.38\bin`

深度学习

  1. theano windows安装及配置gpu
    打开 www.mingw.org-> Download Installer->mingw-get-setup.exe->安装->mingw32-gcc-g++->Mark for Installation->Installation:Apply changes 环境变量: ;C:\MinGW\bin->g++ -v
    1. 安装anaconda(简版miniconda)为了安装python环境 添加Anaconda的TUNA镜像 conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ 设置搜索时显示通道地址 conda config –set show_channel_urls yes
    2. conda install mingw libpython 修改path环境变量:D:\Anaconda2\MinGW\bin;D:\Anaconda2\MinGW\x86_64-w64-mingw32\lib
    3. pip install theano

    4. 新建C:\Users\Administrator.theanorc
      [global]  
      openmp=False  
      [blas]  
      ldflags=  
      [gcc]  
      cxxflags = -I"C:\Program Files\miniconda\MinGW" 
      
    5. 测试 pip install nose
       import theano
       theano.test()
      
  2. 安装pylearn2 模块化 pip install -e git+https://github.com/lisa-lab/pylearn2.git#egg=Package
  3. 对pylearn2的神经网络封装,兼容scikit-learn
    pip install scikit-neuralnetwork
    git clone  https://github.com/aigamedev/scikit-neuralnetwork.git
    cd scikit-neuralnetwork
    pip install matplotlib
    python setup.py develop
    
  4. 测试
    python examples/plot_mlp.py --params activation
    python examples/bench_mnist.py sknn
    

基于scikitlearn的深度学习环境安装(三)(完整版)


Tags: